Questions on Oscillations MS

1.	Data for speaker and equation		
	Equation for shm: $x = A \cos \omega t$		
	A amplitude = 1.0 mm or 1.0×10^{-3} m		
	$\omega = 2\pi f = 6.28 \times 10^2 \text{ (rad s}^{-1)} - \text{no unit penalty for } \omega \text{ (1)}$	2	
	Calculations		
	(i) $A = A \omega^2$		
	= 1.0×10^{-3} m × (6.28×10^{2} rad s ⁻¹) ² = 394 m s ⁻² (1)		
	(ii) $\upsilon = A \omega (1)$		
	= 1.0×10^{-3} m × 6.28×10^{2} rad s ⁻¹ = 0.63 m s ⁻¹ (1)	3	
	Acceleration - time graph		
	Two cycles of sinusoidally shaped graph (1)		
	Period = 10 m s (1)		
	Amplitude = 394 m s^{-2} [e.c.f from (i)] (1)	3	
	Explanation		
	Resonance (stated or implied by explanation) (1)		
	Increased amplitude at resonant frequency (1)	2	[10]
2.	Phenomenon of resonance in the context outlined etc		
	Any five from:		
	• spheres can oscillate		
	 resonance when forcing frequency = natural frequency sound provides forcing frequency 		
	 low frequency due to mass/density of lead spheres 		
	At resonance, there is:		
	• large amplitude of oscillation (of spheres)		
	 maximum energy transfer to spheres energy transfer to thermal in the rubber 		
	 minimum energy transfer to neighbours 	5	
			[5]
2			
3.	Energy:		
	Potential energy = $mgh = 40 \times 10 \times 0.3 = 120 \text{ J}$ (1) Kinetic energy as child hits rubber pillow is about the same value (120 J) (1)		

Kinetic energy as child hits rubber pillow is about the same value (120 J) (1) $mv^2 = 2 \times 120$ gives v = 2.5 m s⁻¹ (1) Kinetic energy transferred to air in pillow, gets warm (1) Use of 3kT/2 (1)

Oscillations:

Oscillations because to and fro motion about a point (1)

	Damped oscillations (1) $F = kx \text{ to } 400 = k$ 0.2 gives $k = 2000 \text{ N m}^{-1}$ (1) $T = 2\sqrt{k/m}$ gives about 6 s (1) Idea that oscillations are not simple harmonic (1)	Max 7	[7]	
4.	Material			
	e.g. porous material / made up of small fibres	1		
	Explanation			
	Any 1 point from the following:			
	• inelastic collisions between air molecules and fibres/materials			
	• fibres/materials absorb energy from the sound			
	fibres/materials deform plastically rather than transmitting vibrations	Max 1		
	Physics of sound reduction			
	Any 4 from:			
	• Microphone is used to detect sound and feed to electronic device			
	• Signal treated to produce output identical in frequency			
	• but in antiphase with original OR inverted			
	• This output fed to loudspeaker			
	Interferes destructively with original sound	Max 4		
	Resonance			
	Sound vibrations (forcing vibrator) have same frequency as another vibrator's natural frequency (1)			
	increasing amplitude/energy of other vibrator's vibrations (1)	2		
	Process			
	Damping	1	[9]	